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Abstract-The restriction imposed by objectivity on the constitutive functional for a material with
memory is well· known. However. the derivation usually given is open to certain objections. A more
satisfactory proof is given in this note.

STATEMENT OF THE PROBLEM

We consider the deformation of a material with memory in which a generic particle with
initial vector position X with respect to a fixed origin 0 moves to Vl.'Ctor position x(r) at
time t. Let X.4 (II = 1. 2. 3) <lOd x,(r) (i = I. 2. 3) be the components of X and x(t)
respectively in .t rectangular Cartesian coordinate system x with origin at O. We may regard
X and x(t) as the column matrices formed by Xci and x,(r). We suppose that at and prior
to time In the material is in its virgin state.

The deformation gradient matrix. ~(r) at time r. referred to the coordinate system x
is defined by

J:(r) = II!JtA(r)il = lIilx,(r)/DX,j II. ( I )

We make the constitutive assumption that the Cauchy stress matrix a(/) at time I. referred
to the coordinate system x, is a symmetric matrix-valued functional of ~(r) with compm:t
support [Ill' II:

a(t) =FIJ:(r)}. (2)

Superposition on the assumed deformation of an arbitrary (time-dependent) rotation.
or alternatively time-dependent rotation of the reference system x, causes the Cauchy stress
matrix u(l) to he rotated by the amount of this rotation at time t; Lt:. the constitutive
equOltion is objective. This implies thtlt F{g('r)} must satisfy the relationt:

Q(/)F~g(r)}Qt(t)= F{Q(r)g(t)} (3)

for all proper orthogonal Q(r) such th'lt QUu) = I. It is well-known th'lt a necess.lry and
sullkient condition for (3) to be stltislied is that F{~(r):· be expressible in the form

F{J:(r)} = g(J)G{C(r)}gt(t). (4)

where G is a symmetric matrix-valued functional of C(r). the Cauchy strain matrix at time
r. defined by

(5)

Proofs of this result have been given by Green and Rivlin (1957) and by Noll (1958).
However neither of them is entirely satisfactory. A much improved version of the proof of

tHere and throughout this note. a dagger denotes the transpose.
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Green and Rivlin was given by Rivlin (1970). but this has the physically unattractive feature
that it depends on taking Q(r) = 1 except at some particular time r say. and then allowing
r to range throughout the whole interval [/ 0• I]. Noll's proof. based on the polar decompo
sition of g(r). involves a logical fallacy. This is of the same nature as that to which Rivlin
and Smith (1987) drew attention in discussing Truesdell's (1960) frequently repeated proof
of George Green's (1938) classical result that for an elastic material the strain-energy
function depends on the deformation gradient matrix through the Cauchy strain matrix.

[n this note a proof is given of the result in (4). which is not open to these objections.
It will be apparent that it bears a strong relation to the proof employed by George Green
in his discussion of elastic materials.

PROOF OF THE THEOREM:

We define a functional F'" {g(r)} by

F"'{g(r)} = g-'(/)F{g(r)}[g-'(tW.

Then. from (3). it follows that F'" must satisfy the restriction

F"'{g(r)} = F"'{Q(r)g(r)}

(6)

(7)

for all proper orthogonal Q(r) such that QUo) = I. This means that F'" is unl.:hanged if an
arbitrary (time-dependent) rotation is superposed on the assumed deformation.

It is well-known that if the Cam:hy strain matrix C( r). defined by (5). is specified. then
the deformation gradient matrix g(r) is determined uniquely apart from an arbitrary
superposed rotation. To sec this. suppose that in (5) C(r). with C(to) = I. is specified and
let ~(r) be some dlOice of J.:(r) which satisfies (5):

Let

C(r) = ~t(r)~(r).

~(r) = M(r)~(r).

(8)

(9)

where M(r) is a non-singular matrix such that M(to) = I. Then g(r) will satisfy (5) if and
only if

( 10)

Compuring (8) and (10) we obt'lin

(II)

M(r) is an orthogonal matrix. Since for uny possible deformation det g(r) > O. it follows
thut det M(r) > 0: M(r) is a proper orthogonal matrix. Accordingly. for specified C(r).
~(r) is uniqudy determined apurt from a superposed rotation. The condition M(to) = 1
then ensures that g(to) = I.

It follows thut a necessury and sull1cient condition for (7) to be satisfied is that F'" {g(r)}
be expressible us a functional of C(r):

P{J.:(r)} = G{C(r)}.

Equution (6) then yields the result (4).

( 12)

:We nole lhal Idell:(tllP (I:(r)} is the sel:ond Piola-Kirl:hholT slress matri~ and (7) is the l:ondition that it
be ohjcetivc.
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